麻省理工近日推出了人形机器人Hermes,它可以通过遥控操作实现灵活移动。
研究人员希望它可以代替人类去执行搜索和营救任务。在面对极度危险的环境时,操纵者可以通过头戴显示器以一人称视角进行操作。
悲剧敲响的警钟:救援机器人的重要性
2011年日本大地震和海啸造成的福岛核电站的灾难为我们敲响了警钟。在灾难中,高危辐射阻止了工人采取紧急措施,他们甚至无法操作压力阀。这个任务其实交给机器人完成是适合的,但在当时日本或世界的其他地方都没有能力使之变成现实。
福岛灾难让机器人学社区的许多人意识到,救援机器人需要从实验室走到世界各地。
此后,救援机器人开始不断取得重大进展。世界各地的研究小组已经展示了可以行驶在碎石中的无人地面车辆,可以挤过狭窄间隙的机器人蛇,以及在天上绘制站点的无人机。研究人员还在建造仿生机器人,可以测量损坏情况并执行关键任务,例如使用仪表盘或运输急救设备。
尽管取得了进步,但是打造跟应急工作人员具备一样运动和决策能力的机器人仍然是一个挑战。推开沉重的门,卸下灭火器,以及其他简单但艰巨的工作需要的一定的协调能力,还没有能制造出掌握这种能力的机器人。
把人脑放在机器里面
理想的救援机器人应该是灵活而自主性很强的。比如能够自主进入燃烧的建筑物中找到受害者,或者在受损的工业设施中找到需要关闭的阀门。
但是灾难现场是不可预测的,行走在这些复杂的环境中需要高度的适应性,而目前的救援机器人还无法做到。如果自主机器人遇到门把手,但在门把手数据库中找不到匹配,任务失败。如果机器人手臂卡住并且不知道如何自救,任务失败。
人类可以轻松应对这种情况:我们可以随时适应和学习,我们可以辨别物体形状的变化,应对糟糕的能见度,可以在现场临时学会如何使用新工具。我们的运动技能也是如此。比如负重跑步的时候,我们可能会跑得慢一些或者没那么远,但仍然可以跑,我们的身体可以轻松地适应新的变化。
把人脑放到机器里不就可以了吗?
针对这个短板的一种解决方案是使用远程操作,即让操作人员连续地或在特定任务期间远程控制机器人,以帮助其完成超出自身能力的操作。
遥控机器人长期以来一直用于工业、航空航天和水下环境。有研究人员已经尝试使用动作捕捉系统将人的动作实时转移到仿生机器人:你挥动手臂,机器人模仿你的姿势。为了获得完全身临其境的体验,特殊的护目镜可以让操作员通过相机看到机器人看到的东西,触觉背心和手套可以为操作员的身体提供触觉。
在麻省理*的人形机器人实验室,研究团队正在进一步推动人机融合,开发遥操作系统,希望加速实操型救援机器人的发展。他们正在建立一个遥控机器人系统,由两个部分组成:一个能够灵活、动态行为的仿生机器人,以及一种新的双向人机界面,可以将人和机器人的动作互相传递。
通过将机器人与人类联系起来,研究者充分结合了两者的优势:机器人的耐力和力量,以及人类的多功能性和感知力。如果机器人踩上碎片并开始失去平衡,操作员会感觉到同样的不稳定性并本能地做出反应以避免跌落。然后捕获该物理反应并将其发送回机器人,这有助于避免机器人坠落。通过这种人机交互,机器人可以利用操作员的先天运动技能和瞬间反应来保持站立。
比之前的仿生机器人进步在哪
现有机器人的一个特殊限制是它们无法执行我们所说的力量操纵 ,即费力的技能,比如将一大块混凝土敲开或将斧头挥舞向一扇门。大多数机器人只能进行一些精细和动作。
而MIT实验室推出的仿生机器人HERMES可以进行重型操纵。该机器人重量只有45公斤, 但是强壮有力。它的身型大约是普通人体的90%,这足以让它在人类环境中自然地演习。
为HERMES的关节提供动力的是定制执行器而不是使用常规直流电机,执行器包括将无刷直流电机融合到行星齿轮箱,这样取名是因为它的三个“行星”齿轮围绕“太阳”齿轮旋转,这可以为它们的重量产生大量的扭矩。机器人的肩部和臀部直接驱动,而膝盖和肘部由连接到执行器的金属杆驱动。这使得HERMES比其他仿生机器人更灵活,能够吸收机械冲击而不会使齿轮摔成碎片。
控制HERMES的人机界面也不同于传统,它是依赖于操作员的反应来提高机器人的稳定性,被称为平衡反馈界面,简称BFI。
更多资讯:人形机器人